Add like
Add dislike
Add to saved papers

Easy In Vitro Synthesis of Optimised Functioning Reporter mRNA from Common eGFP Plasmid.

The extensive growth in number and importance of experiments and clinical-aimed techniques based solely or majorly on the activity of RNA strands, e.g. CRSPR/Cas9 and siRNA, has put emphasis on the necessity of standardisation of experiments with RNA. Considering RNA degradation during its handling seems to be a major hindrance in all RNA-based tools, the assessment of its integrity is of utmost importance. Furthermore, evaluating whether the RNA to be transfected is intact requires time-consuming electrophoresis protocol. In view of the RNA lability and the necessity for controlling experiments performed with this molecule, the transfection of a reporter mRNA may be of aid in optimising experiments. Nevertheless, commercial reporter mRNAs are far less available than plasmids for such purpose. Thus, in this work, we aimed at the optimisation of an easily performed protocol to produce a suitable eGFP mRNA. By utilising molecular biology kits customarily employed in molecular biology laboratories working with RNA-based techniques and starting from any eGFP coding vector, we produced four mRNA molecules: (1) eGFP mRNA (non-polyadenylated); (2) Kozak-eGFP mRNA (non-polyadenylated, produced from the Kozak-containing amplicon); (3) eGFP-PolyA mRNA (polyadenylated); (4) Kozak-eGFP-PolyA mRNA (containing both signals, Kozak sequence and poly(A) tail). These mRNA molecules were transfected into HEK 293 FT cells, readily transfectable, and into the MDBK bovine lineage, which has been observed as difficult-to-transfect DNA constructs. eGFP expression could be detected both by flow cytometry and by fluorescence microscopy after transfection with the polyadenylated mRNAs. Upon cytometric analysis, we noted a marked difference among the mRNA groups (p < 0.01), both in fluorescent population percentage and in florescence intensity. We showed here the necessity of the polyadenylation step in order to achieve cell expression of the eGFP observable under fluorescence microscopy. The presence of the Kozak sequence, as a 5' element, seems to augment significantly the level of protein produced upon mRNA transfection. We presented here an easy protocol to allow production of functioning mRNAs from any DNA construct. The molecules produced may aid in the standardisation and controlling most of the RNA-related experiments as well as it gives proper guidance for researchers performing expression of other proteins through mRNA transfection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app