Add like
Add dislike
Add to saved papers

Physiologically based pharmacokinetic modelling of atomoxetine with regard to CYP2D6 genotypes.

Scientific Reports 2018 August 18
Atomoxetine is a norepinephrine reuptake inhibitor indicated in the treatment of attention-deficit/hyperactivity disorder. It is primarily metabolized by CYP2D6 to its equipotent metabolite, 4-hydroxyatomoxetine, which promptly undergoes further glucuronidation to an inactive 4-HAT-O-glucuronide. Clinical trials have shown that decreased CYP2D6 activity leads to substantially elevated atomoxetine exposure and increase in adverse reactions. The aim of this study was to to develop a pharmacologically based pharmacokinetic (PBPK) model of atomoxetine in different CYP2D6 genotypes. A single 20 mg dose of atomoxetine was given to 19 healthy Korean individuals with CYP2D6*wt/*wt (*wt = *1 or *2) or CYP2D6*10/*10 genotype. Based on the results of this pharmacokinetic study, a PBPK model for CYP2D6*wt/*wt individuals was developed. This model was scaled to those with CYP2D6*10/*10 genotype, as well as CYP2D6 poor metabolisers. We validated this model by comparing the predicted pharmacokinetic parameters with diverse results from the literature. The presented PBPK model describes the pharmacokinetics after single and repeated oral atomoxetine doses with regard to CYP2D6 genotype and phenotype. This model could be utilized for identification of appropriate dosages of atomoxetine in patients with reduced CYP2D6 activity to minimize the adverse events, and to enable personalised medicine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app