Add like
Add dislike
Add to saved papers

UBXD1 is a mitochondrial recruitment factor for p97/VCP and promotes mitophagy.

Scientific Reports 2018 August 18
Clearance of damaged mitochondria through mitophagy is critical for maintaining mitochondrial fidelity and the prevention of neurodegeneration. Here, we report on the UBX domain-containing, p97/VCP cofactor UBXD1/UBXN6/UBXDC2 and its role in mitophagy. Recognizing depolarized mitochondria via its C-terminal UBX domain, UBXD1 translocates to mitochondria in a Parkin-dependent manner. During Parkin-independent mitophagy, UBXD1 shows no mitochondrial translocation. Once translocated, UBXD1 recruits p97 to mitochondria via a bipartite binding motif consisting of its N-terminal VIM and PUB domains. Recruitment of p97 by UBXD1 only depends on the presence of UBXD1 on mitochondria without the need for further mitochondrial signals. Following translocation of UBXD1 to CCCP-depolarized mitochondria and p97 recruitment, formation of LC3-positive autolysosomes is strongly enhanced and autophagic degradation of mitochondria is significantly accelerated. Diminished levels of UBXD1 negatively impact mitophagic flux in Parkin-expressing cells after CCCP treatment. Thus, our data supports a model, whereby the p97 cofactor UBXD1 promotes Parkin-dependent mitophagy by specifically recognizing damaged mitochondria undergoing autophagic clearance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app