Add like
Add dislike
Add to saved papers

Extracellular vesicles protect glucuronidase model enzymes during freeze-drying.

Scientific Reports 2018 August 18
Extracellular vesicles (EVs) are natural nanoparticles that play important roles in intercellular communication and are increasingly studied for biosignalling, pathogenesis and therapy. Nevertheless, little is known about optimal conditions for their transfer and storage, and the potential impact on preserving EV-loaded cargoes. We present the first comprehensive stability assessment of different widely available types of EVs during various storage conditions including -80 °C, 4 °C, room temperature, and freeze-drying (lyophilisation). Lyophilisation of EVs would allow easy handling at room temperature and thus significantly enhance their expanded investigation. A model enzyme, β-glucuronidase, was loaded into different types of EVs derived from mesenchymal stem cells, endothelial cells and cancer cells. Using asymmetric flow field-flow fractionation we proved that the model enzyme is indeed stably encapsulated into EVs. When assessing enzyme activity as indicator for EV stability, and in comparison to liposomes, we show that EVs are intrinsically stable during lyophilisation, an effect further enhanced by cryoprotectants. Our findings provide new insight for exploring lyophilisation as a novel storage modality and we create an important basis for standardised and advanced EV applications in biomedical research.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app