Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Selective Mapping of Deep Brain Stimulation Lead Currents Using Acoustoelectric Imaging.

We describe a new application of acoustoelectric imaging for non-invasive mapping of the location, magnitude and polarity of current generated by a clinical deep brain stimulation (DBS) device. Ultrasound at 1MHz was focused near the DBS device as short current pulses were injected across different DBS leads. A recording electrode detected the high-frequency acoustoelectric interaction signal. Linear scans of the US beam produced time-varying images of the magnitude and polarity of the induced current, enabling precise localization of the DBS leads within 0.70mm, a detection threshold of 1.75mA at 1 MPa and a sensitivity of 0.52 ± 0.07 μV/(mA*MPa). Monopole and dipole configurations in saline were repeated through a human skullcap. Despite 13.8-dB ultrasound attenuation through bone, acoustoelectric imaging was still >10dB above background with a sensitivity of 0.56 ± 0.10 μV/(mA*MPa). This proof-of-concept study indicates that selective mapping of lead currents through a DBS device may be possible using non-invasive acoustoelectric imaging.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app