Add like
Add dislike
Add to saved papers

Surface sensing with integrated optical waveguides: a design guideline.

Optics Express 2018 August 7
Waveguide-based biochemical sensors exploit detection of target molecules that bind specifically to a functionalized waveguide surface. For optimum sensitivity, the waveguide should be designed to mediate maximum influence of the surface layer on the effective refractive index of the guided mode. In this paper, we define a surface sensitivity metric which quantifies this impact and which allows to broadly compare different waveguide types and integration platforms. Focusing on silicon nitride and silicon-on-insulator (SOI) as the most common material systems, we systematically analyze and optimize a variety of waveguide types, comprising simple strips, slot and double slot structures, as well as sub-wavelength gratings (SWG). Comparing the highest achievable surface sensitivities, we provide universal design guidelines and physically interpret the observed trends and limitations. Our findings allow to select the appropriate WG platform and to optimize sensitivity for a given measurement task.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app