Add like
Add dislike
Add to saved papers

Oxidized low density lipoprotein induces endothelial-to-mesenchymal transition by stabilizing Snail in human aortic endothelial cells.

The endothelial-to-mesenchymal transition (EndMT) of endothelial cells contributes to the development of atherosclerosis. Oxidized low density lipoprotein (ox-LDL) is a highly risk factor for atherosclerosis. However, whether ox-LDL causes EndMT and the underlying mechanism are unclear. We report here that ox-LDL treatment is able to induce EndMT in human aortic endothelial cells (HAECs), and that the ox-LDL-induced EndMT is strictly dependent on the presence of its innate receptor, ox-LDL Receptor-1 (LOX-1). In addition, ox-LDL specifically upregulates EndMT transcriptional factor Snail, and knockdown of Snail completely attenuates ox-LDL-induced EndMT, indicating an essential role of Snail in mediating this effect. Mechanically, ox-LDL induces Snail stabilization by inhibiting its ubiquitination, which is in part attributed to inhibited GSK-3β activity. Hence, our findings suggest that inducing EndMT of aortic endothelial cells by ox-LDL might contribute to its detrimental role in promoting atherosclerosis development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app