Add like
Add dislike
Add to saved papers

Anammox bacteria exhibit capacity to withstand long-term starvation stress: A proteomic-based investigation of survival mechanisms.

Chemosphere 2018 November
Although anammox bacteria are commonly exposed to long-term starvation during transportation and preservation process, physiological changes in these organisms during long-term starvation are not well understood, nor are the molecular bases of their starvation survival strategies. To reveal survival mechanisms during long-term anaerobic and anoxic starvation (60 days at 20 ± 1 °C), metaproteomic technology was utilized to identify differentially expressed proteins in Candidatus Kuenenia stuttgartiensis. Our results showed that Candidatus Kuenenia stuttgartiensis exhibits a capacity to withstand long-term starvation stress. Although activity decay rates of 0.0129 d-1 and 0.0049 d-1 were observed for anammox sludge in anoxic and anaerobic starvation, the relative abundance of Candidatus Kuenenia stuttgartiensis, the shape of anammox granules, and the fraction of viable cells remained constant under both anaerobic and anoxic starvation conditions. Metaproteomics results illustrated that Candidatus Kuenenia stuttgartiensis maintained stable levels of most intracellular proteins, especially enzymes involved in principal metabolic pathways after 60-d of anaerobic or anoxic starvation, thereby allowing cells to regain metabolic activities once substrates became available. Induction of starvation proteins could be a survival strategy employed by Candidatus Kuenenia stuttgartiensis to resist long-term starvation stresses. During anaerobic starvation, 34 proteins were upregulated, five of which were associated with carbohydrate catabolism and oxidation of organic compounds, thereby increasing potential for utilization of endogenous carbon sources to produce energy. During anoxic starvation, only two proteins were upregulated, which may be attributed to insufficient energy for the synthesis of starvation-induced proteins.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app