Add like
Add dislike
Add to saved papers

Premna integrifolia ameliorates cyclophosphamide-induced hepatotoxicity by modulation of oxidative stress and apoptosis.

The present study was designed to evaluate the ameliorative effect of ethyl acetate extract of Premna integrifolia L. (EAEPI) leaves in cyclophosphamide (CP)-induced hepatic injury in mice. Mice were intoxicated with CP (200 mg/kg b. wt., i.p.) for 5 weeks or EAEPI (400 and 600 mg/kg b. wt., orally) in combination with CP. The results demonstrated that EAEPI exerts protective effect against CP induced hepatotoxicity, as evident from restoration of altered haematological parameters and alleviations of liver marker enzymes in serum. EAEPI also attenuated oxidative stress and antioxidant markers as evident from reversal of lipid peroxidation, glutathione levels as well as activities of catalase and superoxide dismutase enzymes. Moreover, EAEPI attenuated apoptosis and histopathological liver tissue damage in CP-intoxicated mice. In conclusion, EAEPI could protect mice liver against cyclophosphamide toxicity by inhibiting oxidative stress and apoptosis.The protective activity of EAEPI may be due to presence of polyphenolic compounds as identified by UHPLC-Q-TOF-MS/MS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app