Add like
Add dislike
Add to saved papers

Correlation of antimicrobial effects of phenoxyethanol with its free concentration in the water phase of o/w-emulsion gels.

Antimicrobial testing is a time consuming and cost-intensive but essential method for evaluation of newly developed pharmaceutical formulations for topical use. In this study the correlation between free preservative concentration in emulsion gels measured by equilibrium dialysis and the successful preservative effectiveness testing for Pseudomonas aeruginosa, Staphylococcus aureus, Candida albicans and Aspergillus brasiliensis (analyzed according to Ph. Eur. and USP) was investigated. The higher the lipophilicity of the oil phase and the lower the content of the aqueous phase with regard to dissolved ingredients the more preferably distributed is phenoxyethanol to the water phase and, consequently, the higher was the efficacy against the microbes. Increased emulsifier concentrations reduced the free amount of the preservative due to micellar interactions. Aspergillus brasiliensis was the most resistant and Staphylococcus aureus the most sensitive germ towards phenoxyethanol in o/w-emulsion gels.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app