Add like
Add dislike
Add to saved papers

Detecting Proline and Non-Proline Cis Isomers in Protein Structures from Sequences Using Deep Residual Ensemble Learning.

It has been long established that cis conformations of amino acid residues play many biologically important roles despite their rare occurrence in protein structure. Because of this rarity, few methods have been developed for predicting cis isomers from protein sequences, most of which are based on outdated datasets and lack the means for independent testing. In this work, using a database of >10000 high-resolution protein structures, we update the statistics of cis isomers and develop a sequence-based prediction technique using an ensemble of residual convolutional and long short-term memory bidirectional recurrent neural networks that allow learning from the whole protein sequence. We show that ensembling eight neural network models yields maximum Matthews correlation coefficient values of approximately 0.35 for cis-Pro isomers and 0.1 for cis-nonPro residues. The method should be useful for prioritizing functionally important residues in cis isomers for experimental validations and improving the sampling of rare protein conformations for ab initio protein structure prediction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app