Add like
Add dislike
Add to saved papers

The design and analysis of a new slipper-type hydraulic support.

To improve the safety and the stability of the support under mines and reduce the cost, we design a new slipper-type hydraulic support with energy-efficiency and high reliability. To study its dynamics, we build a reverse kinematics model. We analyze the motion and the force for each component of the new support with a simulation in Matlab/Simulink. The results show that it has appropriate structures with the required four-bar linkages. To compare the performance between the new slipper-type support and the traditional support, we design their mechanics models, deduce their mechanics relations and obtain the force curves for each component of both supports under the same loads. The results prove that the new slipper-type support has less demand on oil pressure for the hydraulic cylinder when working at middle and high positions and it has a larger supporting force and a higher supporting stability which would be more energy-efficient.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app