Add like
Add dislike
Add to saved papers

Pseudoelasticity at Large Strains in Au Nanocrystals.

Pseudoelasticity in metals is typically associated with phase transformations (e.g., shape memory alloys) but has recently been observed in sub-10 nm Ag nanocrystals that rapidly recovered their original shape after deformation to large strains. The discovery of pseudoelasticity in nanoscale metals dramatically changes the current understanding of the properties of solids at the smallest length scales, and the motion of atoms at surfaces. Yet, it remains unclear whether pseudoelasticity exists in different metals and nanocrystal sizes. The challenge of observing deformation at atomistic to nanometer length scales has prevented a clear mechanistic understanding of nanoscale pseudoelasticity, although surface diffusion and dislocation-mediated processes have been proposed. We further the understanding of pseudoelasticity in nanoscale metals by using a diamond anvil cell to compress colloidal Au nanocrystals under quasihydrostatic and nonhydrostatic pressure conditions. Nanocrystal structural changes are measured using optical spectroscopy and transmission electron microscopy and modeled using electrodynamic theory. We find that 3.9 nm Au nanocrystals exhibit pseudoelastic shape recovery after deformation to large uniaxial strains of up to 20%, which is equivalent to an ellipsoid with an aspect ratio of 2. Nanocrystal absorbance efficiency does not recover after deformation, which indicates that crystalline defects may be trapped in the nanocrystals after deformation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app