Add like
Add dislike
Add to saved papers

Effect of Semi-Fluorinated Alkyl Side Chains on Conjugated Polymers with Planar Backbone in Organic Field-Effect Transistors.

Newly synthesized donor-acceptor (D-A) type of conjugated copolymer (PCTV-BTzF) with semi-fluorinated alkyl side chains, which has good solubility in common organic solvents, is described. Unlike polymers with hydrocarbon-based alkyl side chains, semi-fluorocabonated polymer leads to intriguing results. First, the self-organization behavior of the semi-fluoroalkyl side chains by the self-aggregate propensity between hydrocarbon and fluorocarbon induces patterned microstructural morphology in polymer films; second, it dominates the molecular orientation of polymers with planar back structure. Such unusual properties of the polymer with semi-fluoroalkyl side chains compared to that with the hydrocarbon ones are verified and characterized though various systematic characterizations, including temperature-dependent UV-Vis absorption spectroscopy, atomic force microscopy, and 2D-grazing incident X-ray diffraction measurement. As a result, PCTV-BTzF-based OFETs show the maximum p-type field-effect mobility of 1.02 cm2  V-1  s-1 in the 200 °C annealed films.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app