Add like
Add dislike
Add to saved papers

A rationally designed Fe-tetrapyridophenazine complex: a promising precursor to a single-atom Fe catalyst for an efficient oxygen reduction reaction in high-power Zn-air cells.

Nanoscale 2018 August 31
The development of low-cost and highly efficient single-atom oxygen reduction catalysts to replace platinum for fuel cells and metal-air cells is highly desirable but remains challenging. Herein, we report the fabrication of isolated single-atom Fe anchored on porous nitrogen-doped carbon from the pyrolysis of a well-designed solely Fe-tetrapyridophenazine coordination complex. The N-rich bridging ligand, tetrapyridophenazine (tpphz) is first employed as a spatial isolation agent of Fe that suppresses its aggregation during high temperature pyrolysis, resulting in highly reactive and stable single-atom Fe ORR catalysts. The catalyst shows remarkable ORR activity with a half-wave potential of 0.863 V versus the reversible hydrogen electrode (RHE) (21 mV more positive than that of commercial 20 wt% Pt/C) and excellent durability in 0.1 M KOH. Whereas in acidic media, the Fe single atoms also demonstrate ORR activity comparable to and stability much higher than those of Pt/C. Notably, Zn-air cells made using the as-prepared catalyst as the cathode provide a high open circuit voltage (1.53 V) and gravimetric energy density (947 W h kg-1), which are higher than commercial Pt/C based Zn-air cells (1.50 V and 828 W h kg-1). This work will open a new avenue to design single-atom catalysts for clean renewable energy storage and conversion devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app