Add like
Add dislike
Add to saved papers

Simulation of penetration depth of Bessel beams for multifocal optical coherence tomography.

Applied Optics 2018 June 11
Multifocal Bessel beam optical coherence tomography (MBOCT) combines the advantages of Bessel beam OCT and multifocal OCT to increase imaging depth. For MBOCT, the penetration depth of the Bessel beam in highly scattering biological tissue limits the final imaging depth. In this paper, we theoretically analyze the penetration depth of the Bessel beams with different parameters to explore which kind of Bessel beam is more suitable for MBOCT in a scattering medium. The finite-difference time-domain method is used to simulate the field distribution of Bessel beams in the medium. We find that the MBOCT for more focus based on a Bessel beam with a smaller Fresnel number N has higher penetration depth and light intensity when its lateral resolution is fixed. Moreover, the Bessel beam with N reversely closer to unity is more advantageous for penetrating the highly scattering medium for a certain imaging depth, and the Bessel beam has larger penetration depth when its lateral size is close to the size of the object to be imaged.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app