Add like
Add dislike
Add to saved papers

How surfactant-decorated nanoparticles contribute to thermodynamic miscibility.

Nanotechnology 2018 November 24
In this study, mineral oil-water fluid miscibility without and with the addition of surfactant-decorated nanoparticles is experimentally and theoretically studied. First, three series of interfacial tension (IFT) tests are conducted using a spinning drop tensiometer (SDT) with the addition of hexadecyltrimethylammonium bromide (CTAB) surfactant-decorated SiO2 nanoparticles at different concentrations. Second, a new comprehensive thermodynamic model is developed to describe the fluid miscibility without and with the addition of these surfactant-decorated nanoparticles, which is also applied theoretically to reveal how the surfactant-decorated nanoparticles contribute to the thermodynamic miscibility state. The thermodynamic model developed is proven to be accurate and physically meaningful by comparing its calculated free energy of mixing with the experimental results and examples from the literature. A series of optimum conditions for the improvement of fluid miscibility by the addition of such surfactant-decorated nanoparticles are determined: a lower temperature, a higher pressure, more wetting conditions, a smaller nanoparticle radius (r NP  < 40 nm), a larger surfactant concentration, and a nanoparticle concentration in the range of 0.5-0.6 wt.%. It should be noted that a higher nanoparticle concentration is required with the addition of more CTAB surfactants in order to reach the most miscible state. Moreover, the effect of surfactant concentration on the miscibility development is found to be independent of the nanoparticle radius, whereas the optimum nanoparticle concentration is reduced with increasing particle size.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app