Journal Article
Review
Add like
Add dislike
Add to saved papers

Lithium versus Mono/Polyvalent Ion Intercalation: Hybrid Metal Ion Systems for Energy Storage.

The energy storage by redox intercalation reactions is, nowadays, the most effective rechargeable ion battery. When lithium is used as intercalating agents, the high energy density is achieved at an expense of non-sustainability. The replacement of Li+ with cheaper monovalent ions enables to make greener battery alternatives. The utilization of polyvalent ions instead of Li+ permits to multiplying the battery capacity. Contrary to Li+ , the realization of quick and reversible intercalation of bigger monovalent and of polyvalent ions is a scientific challenge due to kinetic constraints, polarizing ion effects and Coulomb interactions. Herein we provide a vision how to make the intercalation of these ions feasible. The idea is to perform dual intercalation of ions having different charges, radii, preferred coordination and diffusion pathway topology. All these features are demonstrated by the recent knowledge on selective and non-selective intercalation properties of oxides and polyanion compounds with layered and tunnel structures. Based on dual intercalation properties, the fabrication of hybrid metal ion batteries is presented and discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app