Add like
Add dislike
Add to saved papers

Insulin-like growth factor 1/insulin-like growth factor 1 receptor signaling protects against cell apoptosis through the PI3K/AKT pathway in glioblastoma cells.

Glioblastoma multiforme (GBM) is a malignant tumor caused by complex pathological mechanisms, and is characterized by a high rate of cancer-related mortality and poor patient prognosis. Overgrowth of cancer cells, which results from the inhibition of cell apoptosis and/or the promotion of cell proliferation, leads to the progression of GBM. Therefore, studies into the regulatory mechanisms of cancer cell growth in GBM are required to identify potential therapeutic targets and improve treatment for GBM. In the present study, the role of insulin-like growth factor 1 (IGF1)/IGF1 receptor (IGF1R) signaling in the survival of GBM cells was evaluated. It was observed that IGF1 significantly inhibited the intrinsic and extrinsic pathways of apoptosis (P<0.05), and overexpression of IGF1R significantly promoted the survival of GBM cells (P<0.05). Moreover, both exogenous IGF1 and overexpression of IGF1R promoted the phosphorylation of protein kinase B (AKT), and inhibition of the phosphoinositide 3-kinase (PI3K)/AKT pathway significantly attenuated the inhibitory effects of IGF1/IGF1R on GBM apoptosis (P<0.05). Collectively, these findings indicate that IGF1/IGF1R promotes the survival of GBM cells through activation of the PI3K/AKT pathway. Therefore, inhibition of IGF1/IGF1R may be a viable therapeutic strategy to suppress the progression of GBM.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app