Add like
Add dislike
Add to saved papers

Sphingosine 1-phosphate receptor modulator ONO-4641 stimulates CD11b + Gr-1 + cell expansion and inhibits lymphocyte infiltration in the lungs to ameliorate murine pulmonary emphysema.

Mucosal Immunology 2018 August 17
Sphingolipids play a pivotal role in the pathogenesis of chronic obstructive pulmonary disease (COPD). However, little is known about the precise roles of sphingosine-1-phosphate (S1P), a bioactive sphingolipid metabolite, and its receptor modulation in COPD. In this study, we demonstrated that the S1P receptor modulator ONO-4641 induced the expansion of lung CD11b+ Gr-1+ cells and lymphocytopenia in naive mice. ONO-4641-expanded CD11b+ Gr-1+ cells showed higher arginase-1 activity, decreased T cell proliferation, and lower IFN-γ production in CD3+ T cells, similar to the features of myeloid-derived suppressor cells. ONO-4641 treatment decreased airspace enlargement in elastase-induced and cigarette smoke-induced emphysema models and attenuated emphysema exacerbation induced by post-elastase pneumococcal infection, which was also associated with an increased number of lung CD11b+ Gr-1+ cells. Adoptive transfer of ONO-4641-expanded CD11b+ Gr-1+ cells protected against elastase-induced emphysema. Lymphocytopenia observed in these models likely contributed to beneficial ONO-4641 effects. Thus, ONO-4641 attenuated murine pulmonary emphysema by expanding lung CD11b+ Gr-1+ cell populations and inducing lymphocytopenia. The S1P receptor might be a promising target for strategies aimed at ameliorating pulmonary emphysema progression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app