Add like
Add dislike
Add to saved papers

Metabolic Shift Induced by ω -3 PUFAs and Rapamycin Lead to Cancer Cell Death.

BACKGROUND/AIMS: Rapamycin (Rp), the main mammalian target of rapamycin complex inhibitor, is a promising therapeutic agent for breast cancer. However, metabolic disorders and drug resistance reduce its efficacy. Epidemiological, clinical, and experimental studies have demonstrated that omega-3 polyunsaturated fatty acids (ω-3 PUFAs) significantly reduce the incidence and mortality of breast cancer and improve metabolic disorders.

METHODS: Three breast cancer cell lines and immunocompetent and immunodeficient mice were used to evaluate the therapeutic effects of Rp plus ω-3 PUFA treatment. The production of reactive oxygen species (ROS) and glucose uptake were examined by flow cytometry. Metabolic shift was examined by metabonomics, seahorse experiments, and western blot analysis.

RESULTS: We found that ω-3 PUFAs and Rp synergistically induced cell cycle arrest and apoptosis in vitro and in vivo, accompanied by autophagy blockage. In addition, Rp-induced hypertriglyceridemia and hypercholesterolemia were completely abolished by ω-3 PUFA supplementation. Moreover, the combined treatment of ω-3 PUFA and Rp significantly inhibited glycolysis and glutamine metabolism. The anti-tumor effects of this combination treatment were dependent on ROS production, which was increased by β-oxidation and oxidative phosphorylation.

CONCLUSION: Our study revealed that ω-3 PUFA enhanced the anti-tumor activity of Rp while minimizing its side effects in vitro and in vivo. These results provide novel insights into the mechanisms underlying the potential beneficial effects of Rp combined with ω-3 PUFAs on the prevention of breast cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app