JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

MS-STEM-FEM: A parallelized multi-slice fluctuation TEM simulation tool.

Ultramicroscopy 2018 November
Atomic configurations of glassy or amorphous materials containing medium-range order (MRO) may be identified by comparing fluctuation transmission electron microscopy (FTEM) measurements to FTEM simulations obtained using model configurations. Candidate model sizes have traditionally been much thinner than the samples measured experimentally, and publicly available FTEM simulation software has until now omitted microscope parameters, dynamical scattering, and the phase of the diffracted electron wave. We introduce MS-STEM-FEM, an open-source software package for simulating FTEM experiments using established multi-slice TEM simulation techniques to emulate experiment more closely by incorporating microscope parameters and simulating electron scattering and propagation as a complex valued wave. Simulations using established models are compared with results of experimental STEM-FEM to validate the software. Several statistical measures of diffraction are implemented and their responses to model features are compared. Dynamical scattering is found to be less influential than the variety of crystallite orientations which occur in thicker models. Simulations of variable resolution microscopy confirm that cumulative intensity of the FTEM signal decreases with reduced model MRO and increased coherence volume. Advantageous model scaling characteristics and efficient processor performance scaling are demonstrated, along with a study of convergence with respect to pertinent simulation parameters to identify accuracy requirements.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app