Add like
Add dislike
Add to saved papers

Influence of inhibitors on the adhesion of SRB to the stainless steel in circulating cooling water.

Influence of the surface characteristics of three stainless steels (SS304, 316L and 317) and presence of scale inhibitors on adhesion kinetics of sulfate reducing bacteria (SRB) in circulating cooling water, were investigated by evaluating surface free energy, adhesion kinetic constants in a parallel plate flow chamber. Results show that the surface free energy values of SS317, SS316L and SS304 are -31.69, -24.18 and -13.92 mJ m-2 , respectively. SS317 surface had higher surface hydrophobicity than SS316L and SS304. In the process of bacteria cells adhesion onto SS surfaces, electrostatic interaction for SS is slightly more than hydrophobic interaction. The number of adhering bacteria and the adhesion kinetic constants are different on the three types of stainless steel. The adhesion kinetic constants for SS317 and 316L are greater than that for SS304, which are 0.0354, 0.0282 and 0.0190 min-1 , respectively. Scale inhibitors of hydrosy ethyl fork phosphonic acid (HEDP) and phosphono butane-1, 2, 4-tricarboxylic acid (PBTCA) have a certain influence on the initial adhesion of bacteria cell and adhesion kinetics constants are reduced in the presence of HEDP and PBTCA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app