Add like
Add dislike
Add to saved papers

A cyclodextrin polymer membrane-based passive sampler for measuring triclocarban, triclosan and methyl triclosan in rivers.

In recent years, extensive attention has been paid to the passive sampling technology of diffusive gradients in thin films (DGT) due to its growing application in the measurement of a widening variety of compounds. Within any DGT device, the binding phase is a key component, and seeking novel binding phases is an issue worth studying. Cyclodextrin polymer, as a green and eco-friendly material, may be a good choice for measuring organic chemicals. In this study, a novel DGT sampler with cyclodextrin polymer membrane (CDPM) as the binding phase was developed for measuring the concentrations of triclosan, triclocarban and methyl triclosan. Firstly, the type and content of cyclodextrin used in CDPM was optimized, and a series of tests showed that CDPM had good hydrophilicity, thermal stability, fast uptake rate and sufficient uptake capacity, thus CDPM was determined to be suitable for use as the binding phase of DGT sampler. Moreover, the sampling rates of this DGT sampler were not influenced by ionic strength and dissolved organic matter, making it feasible for in situ monitoring of compounds in the field. Hence, we deployed the developed DGT sampler in the Qinhuai and Jiuxiang Rivers to measure the concentrations of three compounds. We also collected water samples and processed them with the solid phase extraction (SPE) method. Results indicated that there was no significant difference between the DGT-measured and the SPE-measured concentrations for each compound, which confirmed the reliability of this DGT sampler for monitoring the concentrations of compounds in natural waters.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app