Add like
Add dislike
Add to saved papers

Epigenetic aberrations of miR-369-5p and DNMT3A control Patched1 signal pathway in cardiac fibrosis.

Toxicology 2018 December 2
Modulation of epigenetic marks has promised efficacy for treating fibrosis. Cardiac fibroblast is the primary source of activated myofibroblasts that produce extracellular matrix (ECM) in cardiac fibrosis, but the mechanisms underlying this process are incompletely understood. Here we show that microRNA-369-5p (miR-369-5p) through DNMT3A hypermethylation and suppression of the Patched1 pathway leads to fibroblast proliferation in cardiac fibrosis. Forty adult male Sprague-Dawley (SD) rats were randomly divided into two groups (sham and AAC group), cardiac fibrosis was produced by abdominal aortic constriction, and the operation of abdominal aortic constriction was carried out according to the method described. Cardiac fibroblasts (CFs) were harvested from SD neonate rats and cultured. Importantly, miR-369-5p bind directly to DNMT3A with high affinity. MiR-369-5p leads to inhibition of DNMT3A enzyme activity. Exogenous miR-369-5p in cells induces aberrant DNA methylation of the Patched1, resulting in hypermethylation of low to moderately methylated regions. Moreover, Overexpression of miR-369-5p in cardiac fibroblast cells inhibits proliferation. We identify DNMT3A as miR-369-5p target genes and demonstrate that inhibition of miR-369-5p expression augments cell proliferation by activating DNMT3A and suppression of the Patched1 pathway. Together, our results highlight miR-369-5p mediated DNMT3A epigenetic silencing of Patched1 as a mechanism of fibroblast proliferation in cardiac fibrosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app