Add like
Add dislike
Add to saved papers

Enhanced Wear Performance of Hybrid Epoxy-Ceramic Coatings on Magnesium Substrates.

Epoxy-based polymer was deposited as sealing agent on porous anodized coatings prepared by plasma electrolytic oxidation (PEO) to construct multilayered "soft-hard" coatings on Mg substrates. Different thicknesses and microstructures of the top epoxy layer were achieved by employing different dip-coating strategies. Atomic force microscopy, pull-off tests, and nanoindentation tests were conducted to study the surface roughness, the adhesion strength of the epoxy layer, and the mechanical properties of each component in the hybrid coating system. The micropores and other defects on the anodized layers were sealed by the epoxy polymer, which decreased the surface roughness. The dominant abrasive wear behavior of blank PEO coatings was significantly reduced by the epoxy layers, and the wear mechanism of the hybrid coatings was proposed considering both the microstructure of the hybrid coatings and the mechanical properties of the different components in the hybrid system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app