Add like
Add dislike
Add to saved papers

Line-edge roughness as a challenge for high-performance wire grid polarizers in the far ultraviolet and beyond.

Optics Express 2018 July 24
High-performance nano-optical elements for application wavelengths in the ultraviolet spectral range often require feature sizes of only a few tens of nanometers where line edge roughness (LER) becomes a critical parameter for the optical performance. In this contribution, we explore the influence of LER on the optical performance of wire grid polarizers (WGP) in the far ultraviolet range. Therefore, we present a method, which uses the finite difference time domain method in combination with a comprehensive spatial frequency dependent LER model. The measured LER of 3.6 nm (standard deviation) reduces the WGP's extinction ratio by a factor of 3.6 at a wavelength of 248 nm. We identify a critical range of the correlation length, which maximizes the detrimental effect of LER. The presented method and the results provide the basis for future fabrication technology optimization of WGPs and other optical meta-surfaces in the ultraviolet spectral region or at even shorter wavelengths.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app