Add like
Add dislike
Add to saved papers

Significantly Accelerated Osteoblast Cell Growth on TiO 2 /SrHA Composite Mediated by Phenolic Compounds (BHM) from Hippocamp us kuda Bleeler.

The microstructure of hydroxyapatite is known to influence cellular behavior, can be used as a substrate for osteoblast growth, and exploited as a drug-release platform. However, easy delamination and self-decomposition of hydroxyapatite caused by poor adhesion with substrates are the main problems currently. In this paper, we successfully fabricated titanium dioxide/strontium-doped hydroxyapatite (TiO2 /SrHA) composite scaffolds by self-generated strontium-substituted hydroxyapatite microspheres in TiO2 nanotubes. Moreover, the active compound 1-(5-bromo-2-hydroxy-methoxyphenyl)-ethanone (BHM) from Seahorse ( Hippocampus kuda Bleeler) was loaded in this scaffold, and the controlled release kinetics of BHM was studied. It was found that in the first 5 h, the release concentration and time of BHM had a good linear relationship, and the correlation coefficient reached 0.98. TiO2 /SrHA/BHM composites exhibited favorable cytocompatibility at a given concentration of BHM (20 μmol/L). Compared to pure SrHA, TiO2 nanotubes, and traditional TiO2 /SrHA composites, superior cytocompatibility (cell adhesion and proliferation) of MC3T3-E1 was obtained on TiO2 /SrHA/BHM composites. The expression levels of osteogenic marker genes such as alkaline phosphatase, osteopontin, osteocalcin, runt-related transcription factor 2, and collagen I are also upregulated to varying degrees. This TiO2 /SrHA composite scaffold-mediated phenolic compound BHM could be applied in bone tissue repair.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app