Add like
Add dislike
Add to saved papers

Muscle type-specific RNA polymerase II recruitment during PGC-1α gene transcription after acute exercise in adult rats.

Epigenetic regulation of gene expression differs between fast- and slow-twitch skeletal muscles in adult rats, although the precise mechanisms are still unknown. The present study investigates the differences in responses of RNA polymerase II (Pol II) and histone acetylation during transcriptional activation in the plantaris and soleus muscles of adult rats after acute treadmill running. We targeted the peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) gene to analyze epigenomic changes by chromatin immunoprecipitation. The mRNA expression of the PGC-1α-b isoform was significantly up-regulated in both plantaris and soleus muscles 2 h after acute running, although the magnitude of the up-regulation was more pronounced in the plantaris muscle. The sequences of proximal exons of the PGC-1α locus were expressed more in the plantaris muscle after acute running. Accumulation of Pol II was noted near the alternative exon 1 in both plantaris and soleus muscles in association with the enhanced distribution of acetylated histone 3. Accumulation of Pol II was also observed at the transcription start site, exon 2, and exon 3 in the plantaris muscle, but not the soleus muscle. It was noted that in the soleus muscle, acetylation of histone 3 at lysine 27 was enhanced throughout the PGC-1α locus in response to transcriptional activation, suggesting that elongating Pol II was capable of traveling through to the end of the locus. These results indicate that the mobility of Pol II during PGC-1αtranscription differed between fast- and slow-twitch skeletal muscles, affecting the strength of the transcriptional activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app