Add like
Add dislike
Add to saved papers

ST2/IL-33 signaling promotes malignant development of experimental squamous cell carcinoma by decreasing NK cells cytotoxicity and modulating the intratumoral cell infiltrate.

Oncotarget 2018 July 21
Squamous cell carcinoma (SCC) is the second most common form of skin cancer and the mechanism(s) involved in the progression of this tumor are unknown. Increases in the expression of IL-33/ST2 axis components have been demonstrated to contribute to neoplastic transformation in several tumor models and interleukin-33 is correlated with poor prognosis of patients with squamous cell carcinoma of the tongue. Based on these observations, we sought to determine the role of the IL-33/ST2 pathway during the development of SCC. Our findings show that ST2-deficiency led to a marked decrease in the severity of skin lesions, suggesting that ST2 signaling contributed to tumor development. An analysis of tumor lesions in wild-type and ST2KO mice revealed that a lack of ST2 was associated with specific and significant reductions in the numbers of CD4+ T cells, CD8+ T cells, dendritic cells, and macrophages. In addition, NK cells that were isolated from ST2KO mice exhibited higher cytotoxic activity than cells isolated from wild-type mice. Notably, ST2 deficiency resulted in lower IFN-γ, TNF-α, IL-10, and IL-17 production in tumor samples. Our findings indicate that the IL-33/ST2 pathway contributes to the development of SCC by affecting leukocyte migration to tumor microenvironment and impairing NK cytotoxic activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app