Add like
Add dislike
Add to saved papers

Autophagy-dependent apoptosis is triggered by a semi-synthetic [6]-gingerol analogue in triple negative breast cancer cells.

Oncotarget 2018 July 21
Triple negative breast cancer (TNBC) is very aggressive and lacks specific therapeutic targets, having limited treatment options and poor prognosis. [6]-gingerol is the most abundant and studied compound in ginger, presenting diverse biological properties such as antitumor activity against several types of cancer, including breast cancer. In this study, we show that the semi-synthetic analogue SSi6, generated after chemical modification of the [6]-gingerol molecule, using acetone-2,4-dinitrophenylhydrazone (2,4-DNPH) reagent, enhanced selective cytotoxic effects on MDA-MB-231 cells. Remarkably, unlike the original [6]-gingerol molecule, SSi6 enabled autophagy followed by caspase-independent apoptosis in tumor cells. We found a time-dependent association between SSi6-induced oxidative stress, autophagy and apoptosis. Initial SSi6-induced reactive oxygen species (ROS) accumulation (1h) led to autophagy activation (2-6h), which was followed by caspase-independent apoptosis (14h) in TNBC cells. Additionally, our data showed that SSi6 induction of ROS plays a key role in the promotion of autophagy and apoptosis. In order to investigate whether the observed cell death induction was dependent on preceding autophagy in MDA-MB-231 cells, we used siRNA to knock down LC3B prior to SSi6 treatment. Our data show that LC3B downregulation decreased the number of apoptotic cells after treatment with SSi6, indicating that autophagy is a key initial step on SSi6-induced caspase-independent apoptosis. Overall, the results of this study show that structural modifications of natural compounds can be an interesting strategy for developing antitumor drugs, with distinct mechanisms of actions, which could possibly be used against triple negative breast cancer cells that are resistant to canonical apoptosis-inducing drugs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app