Add like
Add dislike
Add to saved papers

RARγ is required for mesodermal gene expression prior to gastrulation in Xenopus .

Development 2018 September 18
The developing vertebrate embryo is exquisitely sensitive to retinoic acid (RA) concentration, particularly during anteroposterior patterning. In contrast to Nodal and Wnt signaling, RA was not previously considered to be an instructive signal in mesoderm formation during gastrulation. Here, we show in Xenopus that RARγ is indispensable for the expression of early mesoderm markers and is, therefore, an obligatory factor in mesodermal competence and/or maintenance. We identified several novel targets upregulated by RA receptor signaling in the early gastrula that are expressed in the circumblastoporal ring and linked to mesodermal development. Despite overlapping expression patterns of the genes encoding the RA-synthesizing enzyme Aldh1a2 and the RA-degrading enzyme Cyp26a1, RARγ1 functions as a transcriptional activator in early mesoderm development, suggesting that RA ligand is available to the embryo earlier than previously appreciated. RARγ1 is required for cellular adhesion, as revealed by spontaneous dissociation and depletion of ncam1 mRNA in animal caps harvested from RARγ1 knockdown embryos. RARγ1 knockdown obliterates somite boundaries, and causes loss of Myod protein in the presomitic mesoderm, but ectopic, persistent expression of Myod protein in the trunk. Thus, RARγ1 is required for stabilizing the mesodermal fate, myogenic commitment, somite boundary formation, and terminal skeletal muscle differentiation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app