Add like
Add dislike
Add to saved papers

Ketamine delays progression of oxidative and damaged cataract through regulating HMGB-1/NF-κB in lens epithelial cells.

OBJECTIVE: Lens epithelial cell (LEC) membrane damage is one of the pathogenesis of cataract. High mobility group box-1 (HMGB-1) and nuclear factor-κB (NF-κB) play vital roles in a variety of diseases, such as inflammation. Ketamine has numerous pharmacological effects that can inhibit inflammation. However, its role in cataract rats LECs has not yet been elucidated.

MATERIALS AND METHODS: LECs were isolated from SD rats and cultured in vitro. The cells were randomly divided into three groups, including the control group, cataract model group induced by H2 O2 , and ketamine group treated by 10 mM ketamine under H2 O2 environment. LECs proliferation was assessed by MTT assay. LECs apoptosis was evaluated by Caspase-3 activity detection. NF-κB mRNA and protein expressions were tested by real-time PCR and Western blot. HMGB-1 expressions in cells and supernatant were detected by real-time PCR and ELISA. TNF-α and IL-1β secretions were detected by ELISA.

RESULTS: In H2 O2 model group, the LECs proliferation was significantly inhibited, the caspase-3 activity significantly increased, HMGB-1 mRNA and secretion significantly enhanced, NF-κB mRNA and protein levels significantly elevated, compared to the Control group (p < .05). While the TNF-α and IL-1β secretions significantly up-regulated in H2 O2 model group compared to the Control group (p < .05). Ketamine significantly promoted the LECs proliferation, significantly reduced the caspase-3 activity, and significantly declined the HMGB expression compared to H2 O2 model group (p < .05). The NF-κB mRNA and protein levels were significantly decreased, TNF-α and IL-1β secretions were significantly decreased in the Ketamine group compared with the model group (p < .05).

CONCLUSIONS: Ketamine delays the progression of oxidative and damaged cataract by regulating HMGB-1/NF-κB expression, inhibiting TNF-α, IL-1β, and apoptosis, and promoting cell proliferation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app