Add like
Add dislike
Add to saved papers

Fabrication and Characterization of Starch Nanohydrogels via Reverse Emulsification and Internal Gelation.

Biopolymer-based nanohydrogels have great potential for various applications, including in food, nutraceutical, and pharmaceutical industries. Herein, starch nanohydrogels were prepared for the first time via reverse emulsification coupled with internal gelation. The effects of starch type (normal corn, potato, and pea starches), amylose content, and gelation time on the structural, morphological, and physicochemical properties of starch nanohydrogels were investigated. The diameter of starch nanohydrogel particles was around 100 nm after 12 h of retrogradation time. The relative crystallinity and thermal properties of starch nanohydrogels increased gradually with an increasing amylose content and gelation time. The swelling behavior of starch nanohydrogels was dependent upon the amylose content, and the swelling ratios were between 2.0 and 14.0, with the pea starch nanogels exhibiting the lowest values and the potato starch nanogels exhibiting the highest values.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app