Add like
Add dislike
Add to saved papers

Light-Activated Hybrid Nanocomposite Film for Water and Oxygen Sensing.

Oxygen and water vapor sensing properties are investigated in metal-oxide-hybrid polymer nanocomposite thin films generated by infiltration synthesis, which incorporates molecular ZnO into the matrix of SU-8 polymer, a common negative-tone photoresist. The hybrid thin films display 20-fold higher gravimetric responses to oxygen and water vapor than those of control ZnO thin films in the dark. An additional 50-500% enhanced responses are detected under UV irradiation. The overall enhanced gravimetric response in the hybrid film is attributed to the ZnO molecules distributed in the polymer matrix, whereas the UV enhancement is explained by the light-induced, reversible generation of hydrophilic fluoroantimonic acid from triarylsulfonium hexafluoroantimonate photoacids, which leads to the increased surface potential and adsorption energies for oxygen and water. A gravimetric sensor based on a series of ZnO-infiltrated SU-8 films under UV excitation enables 96% accurate classification of water and oxygen environment with sub 10 mTorr detection limits. The results demonstrate UV-induced fully reversible surface hydrophilicity of ZnO/SU-8 hybrid nanocomposites.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app