Add like
Add dislike
Add to saved papers

Equivalence of nonequilibrium ensembles in turbulence models.

Understanding under what conditions it is possible to construct equivalent ensembles is key to advancing our ability to connect microscopic and macroscopic properties of nonequilibrium statistical mechanics. In the case of fluid dynamical systems, one issue is to test whether different models for viscosity lead to the same macroscopic properties of the fluid systems in different regimes. Such models include, besides the standard choice of constant viscosity, cases where the time symmetry of the evolution equations is exactly preserved, as it must be in the corresponding microscopic systems, when available. Here a time-reversible dynamics is obtained by imposing the conservation of global observables. We test the equivalence of reversible and irreversible ensembles for the case of a multiscale shell model of turbulence. We verify that the equivalence is obeyed for the mean values of macroscopic observables, up to an error that vanishes as the system becomes more and more chaotic.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app