JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Changes in Total Protein Concentration Due to Fluid Removal During and Shortly after Hemodialysis.

BACKGROUND: Changes in plasma volume during hemodialysis are complex and have been shown to depend on the rate of fluid removal and the degree of fluid overload. We examined changes in total protein concentration during and shortly after a dialysis treatment in archived data from the HEMO study.

METHODS: During follow-up months 4 and 36 of the HEMO study, additional blood samples were obtained during a typical dialysis session at 30 and 60 min after dialysis. In 315 studies from 282 patients where complete data were available, we calculated the concentration change in total protein and compared it to the modeled change in both total body water and extracellular fluid space as derived from 2-pool urea kinetic modeling.

RESULTS: The mean postdialysis modeled urea volume (V) was 31.1 ± 6.18 L. Mean fluid removal was 2.76 ± 1.27 kg, over a session length of 207 ± 28 min. The ratio of predialysis V to postdialysis V averaged 1.090 ± 0.040. The mean TP ratios (post/pre) at 0, 30, and 60 min postdialysis averaged 1.121 ± 0.070 (SD), 1.091 ± 0.090, and 1.091 ± 0.086. The dialysate to serum sodium gradient, studied in a different group of treatments where this information was available, had no impact on these findings, nor did the length of the interdialytic interval.

CONCLUSIONS: On average, after equilibration, the change in plasma volume due to fluid removal is similar to the modeled change in total body water (urea space), irrespective of dialysate to serum sodium gradient. This supports previous observations that during dialysis with ultrafiltration, plasma volume contracts to a lesser degree than the interstitial volume and that some fluid may be removed from spaces other than the extracellular fluid.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app