Add like
Add dislike
Add to saved papers

Electronic structure, elasticity, Debye temperature and anisotropy of cubic WO 3 from first-principles calculation.

The electron structure, elastic constant, Debye temperature and anisotropy of elastic wave velocity for cubic WO3 are studied using CASTEP based on density functional theory. The optimized structure is consistent with previous work and the band gap is obtained by computing the electronic structure; the top of the valence band is not at the same point as the bottom of the conduction band, which is an indirect band-gap oxide. Electronic properties are studied from the calculation of band structure, densities of states and charge densities. The bulk and shear moduli, Young's modulus, hardness and Poisson's ratio for WO3 are studied by the elastic constants. We calculated acoustic wave velocities in different directions and estimated the Debye temperature from the acoustic velocity. The anisotropy of WO3 was analysed from the point of view of a pure wave and quasi wave.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app