Add like
Add dislike
Add to saved papers

The mono(catecholamine) derivatives as iron chelators: synthesis, solution thermodynamic stability and antioxidant properties research.

There is a growing interest in the development of new iron chelators as novel promising therapeutic strategies for neurodegenerative disorders. In this article, a series of mono(catecholamine) derivatives, 2,3-bis(hydroxy)- N -(hydroxyacyl)benzamide, containing a pendant hydroxy, have been synthesized and fully characterized by nuclear magnetic resonance, Fourier transform infrared spectroscopy and mass spectrum. The thermodynamic stability of the chelators with FeIII , MgII and ZnII ions was then investigated. The chelators enable formation of (3 : 1) FeIII complexes with high thermodynamic stability and exhibited improved selectivity to FeIII ion. Meanwhile, the results of 1,1-diphenyl-2-picryl-hydrazyl assays of mono(catecholamine) derivatives indicated that they all possess excellent antioxidant properties. These results support the hypothesis that the mono(catecholamine) derivatives be used as high-affinity chelator for iron overload situations without depleting essential metal ions, such as MgII and ZnII ions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app