Add like
Add dislike
Add to saved papers

An Asymmetric Anion-Pillared Metal-Organic Framework as a Multisite Adsorbent Enables Simultaneous Removal of Propyne and Propadiene from Propylene.

Angewandte Chemie 2018 October 2
The one-step removal of multi-component gases based on a single material will significantly improve the efficiency of separation processes but it is challenging, owing to the difficulty to precisely fabricate porous materials with multiple binding sites tailored for different guest molecules. Now a niobium oxide-fluoride anion-pillared interpenetrated material ZU-62 (NbOFFIVE-2-Cu-i, NbOFFIVE=NbOF5 2- ) is presented. It features asymmetric O/F node coordination for the simultaneous removal of trace propyne and propadiene from propylene. The narrow distribution nanospace (aperture of Site I 6.75 Å, Site II 6.94 Å, Site III 7.20 Å) derived from the special coordination geometry within ZU-62 customized the corresponding energy-favorable binding sites for the propyne and propadiene that enable propadiene uptake (1.74 mmol g-1 ) as well as excellent propyne uptake (1.87 mmol g-1 ) under ultra-low pressure (5000 ppm). The multisite capture mechanism was revealed by modeling studies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app