Add like
Add dislike
Add to saved papers

Automated prediction of dosimetric eligibility of patients with prostate cancer undergoing intensity-modulated radiation therapy using a convolutional neural network.

The quality of radiotherapy has greatly improved due to the high precision achieved by intensity-modulated radiation therapy (IMRT). Studies have been conducted to increase the quality of planning and reduce the costs associated with planning through automated planning method; however, few studies have used the deep learning method for optimization of planning. The purpose of this study was to propose an automated method based on a convolutional neural network (CNN) for predicting the dosimetric eligibility of patients with prostate cancer undergoing IMRT. Sixty patients with prostate cancer who underwent IMRT were included in the study. Treatment strategy involved division of the patients into two groups, namely, meeting all dose constraints and not meeting all dose constraints, by experienced medical physicists. We used AlexNet (i.e., one of common CNN architectures) for CNN-based methods to predict the two groups. An AlexNet CNN pre-trained on ImageNet was fine-tuned. Two dataset formats were used as input data: planning computed tomography (CT) images and structure labels. Five-fold cross-validation was used, and performance metrics included sensitivity, specificity, and prediction accuracy. Class activation mapping was used to visualize the internal representation learned by the CNN. Prediction accuracies of the model with the planning CT image dataset and that with the structure label dataset were 56.7 ± 9.7% and 70.0 ± 11.3%, respectively. Moreover, the model with structure labels focused on areas associated with dose constraints. These results revealed the potential applicability of deep learning to the treatment planning of patients with prostate cancer undergoing IMRT.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app