Add like
Add dislike
Add to saved papers

Clonal Saplings of Trembling Aspen Do Not Coordinate Defense Induction.

Induction of plant chemical defenses in response to insect feeding may be localized to the site of damage or expressed systemically, mediated by signal transduction throughout the plant. Such systemic induction processes have been widely investigated in plants with single stems, but rarely in clonal plants comprised of multiple ramets with vascular connections. For a clonal tree species such as trembling aspen (Populus tremuloides Michx), integration of induced defense within clones could be adaptive, as clones are spatially extensive and susceptible to outbreak herbivores. We used pairs of aspen saplings with shared roots, replicated from three genotypes, to determine whether defense-induction signals are communicated within clones. One ramet in each pair was subjected to a damage treatment (feeding by Lymantria dispar, followed by mechanical damage), and subsequent changes in leaf defensive chemistry were measured in both ramets. Responses to damage varied by defense type: condensed tannins (CTs) increased in damaged ramets but not in connected undamaged ramets, whereas salicinoid phenolic glycosides (SPGs) were not induced in any ramets. Genotypes varied in their levels of CTs, but not in their levels of SPGs, and responded similarly to damage treatment. These results suggest that, even with both vascular and volatile information available, young aspen ramets do not induce defenses based on signals or metabolites from other ramets. Thus, unlike other clonal plant species, aspen do not appear to coordinate defense induction within clones. Lack of coordinated early induction in aspen may be related to the function of CTs in tolerance, rather than resistance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app