Add like
Add dislike
Add to saved papers

Downregulated circulating microRNAs after surgery: potential noninvasive biomarkers for diagnosis and prognosis of early breast cancer.

Success in curing breast cancer largely depends on the stage at diagnosis. Circulating microRNAs are becoming a promising noninvasive biomarker. We postulate that a postoperative decline in circulating microRNAs might have diagnostic and prognostic value. Applying high-throughput microarrays, we screened the dysregulated microRNAs in paired serum samples before and after surgery. The relative concentrations of putative markers between the early breast cancer and cancer-free groups were evaluated in the training set and verified in the validation set. Sensitivity, specificity, and receiver operating characteristic (ROC) curves were used to assess diagnostic value. Survival analysis was performed using Kaplan-Meier estimates and a Cox proportional hazards model. Five microRNAs significantly reduced after surgery were selected for the training set. We found that miR-130b-5p, miR-151a-5p, miR-206, and miR-222-3p were significantly higher in the breast cancer group. Each of the four microRNAs had potential diagnostic value. The combined four microRNAs (training set: area under the curve (AUC) 0.8457; validation set: AUC 0.9309) had better diagnostic value than each single microRNA. MiR-222-3p was an independent prognostic factor for disease-free survival (HR = 13.19; 95% CI, 1.06-163.59; P  = 0.045). Patients with no fewer than three highly expressed miRNAs had shorter DFS than patients with 0-2 highly expressed miRNAs (HR = 2.293; 95% CI, 1.128-0.662; P  = 0.022). Our findings indicate that postoperatively downregulated circulating miR-130b-5p, miR-151a-5p, miR-206, and miR-222-3p may be potential biomarkers for breast cancer diagnosis and prognosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app