Add like
Add dislike
Add to saved papers

One-pot synthesis, anti-tumor evaluation and structure-activity relationships of novel 25-OCH 3 -PPD derivatives.

MedChemComm 2017 September 2
Based on the fact that 25-OCH3 -PPD, a natural ginsengenin isolated from the leaves of Panax ginseng , is a promising lead compound, novel 25-OCH3 -PPD derivatives were synthesized to find more potent anti-tumor agents by a simple and facile synthetic method. These derivatives were classified into three types and screened for their cytotoxic activities against seven human cancer cell lines. Compared with 25-OCH3 -PPD, compounds a5 , a7 , b5 and b7 exhibited higher anti-tumor activities on all tested cell lines with almost 5-fold to 15-fold increases. In particular, compound a7 showed the greatest cytotoxic activity against α-2 cells (IC50 = 2.4 ± 0.4 μM). The preliminary study on the mechanisms indicated that compound a7 could induce α-2 cell apoptosis. Structure-activity relationships demonstrated that the carbon-carbon double bond at the C-20 position could enhance the antiproliferative activity. In conclusion, the novel derivatives a5 , a7 , b5 and b7 could be further studied as potential candidates for the treatment of cancer. This research provides a theoretical reference for the exploration of new antiproliferative agents.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app