Add like
Add dislike
Add to saved papers

Clinical Applications of Quantitative 3-Dimensional MRI Analysis for Pediatric Embryonal Brain Tumors.

PURPOSE: To investigate the prognostic utility of quantitative 3-dimensional magnetic resonance imaging radiomic analysis for primary pediatric embryonal brain tumors.

METHODS AND MATERIALS: Thirty-four pediatric patients with embryonal brain tumor with concurrent preoperative T1-weighted postcontrast (T1PG) and T2-weighted fluid-attenuated inversion recovery (FLAIR) magnetic resonance images were identified from an institutional database. The median follow-up period was 5.2 years. Radiomic features were extracted from axial T1PG and FLAIR contours using MATLAB, and 15 features were selected for analysis based on qualitative radiographic features with prognostic significance for pediatric embryonal brain tumors. Logistic regression, linear regression, receiver operating characteristic curves, the Harrell C index, and the Somer D index were used to test the relationships between radiomic features and demographic variables, as well as clinical outcomes.

RESULTS: Pediatric embryonal brain tumors in older patients had an increased normalized mean tumor intensity (P = .05, T1PG), decreased tumor volume (P = .02, T1PG), and increased markers of heterogeneity (P ≤ .01, T1PG and FLAIR) relative to those in younger patients. We identified 10 quantitative radiomic features that delineated medulloblastoma, pineoblastoma, and supratentorial primitive neuroectodermal tumor, including size and heterogeneity (P ≤ .05, T1PG and FLAIR). Decreased markers of tumor heterogeneity were predictive of neuraxis metastases and trended toward significance (P = .1, FLAIR). Tumors with an increased size (area under the curve = 0.7, FLAIR) and decreased heterogeneity (area under the curve = 0.7, FLAIR) at diagnosis were more likely to recur.

CONCLUSIONS: Quantitative radiomic features are associated with pediatric embryonal brain tumor patient age, histology, neuraxis metastases, and recurrence. These data suggest that quantitative 3-dimensional magnetic resonance imaging radiomic analysis has the potential to identify radiomic risk features for pediatric patients with embryonal brain tumors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app