Add like
Add dislike
Add to saved papers

An intrinsic fluorescence method for the determination of protein concentration in vaccines containing aluminum salt adjuvants.

Vaccine 2018 September 12
Determination of protein concentration in vaccines containing aluminum salt adjuvant typically necessitates desorption of the protein prior to analysis. Here we describe a method based on the intrinsic fluorescence of tyrosine and tryptophan that requires no desorption of proteins. Adjuvanted formulations of three model Bordetella pertussis antigens were excited at 280 nm and their emission spectra collected from 290 to 400 nm. Emission spectra of protein antigens in the presence of aluminum salt adjuvants were able to be detected, the effects of adjuvants on the spectra were analyzed, and linear regressions were calculated. The fluorescence method proved to be very sensitive with a limit of quantification between 0.4 and 4.4 µg/mL and limit of linearity between 100 and 200 µg/mL, across the formulations tested. The fluorescence method was found to be influenced by adjuvant presence, type of adjuvant, adjuvant concentration, buffer and pH conditions. The method also demonstrated ability to monitor the percent adsorption of antigens to the adjuvants. Furthermore, intrinsic fluorescence showed good correlation with micro-Kjeldahl elemental assay in quantifying protein concentration. Being a non-invasive, quick and sensitive method, intrinsic fluorescence has the potential to be utilized as a high throughput tool for vaccine development and conceivably implemented in-line, using in-line fluorimeters, to monitor antigen concentration during formulation processing.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app