Add like
Add dislike
Add to saved papers

The Soluble Fiber α-Cyclodextrin Does Not Increase the Fecal Losses of Dietary Fat in Adults-A Double-Blind, Randomized, Placebo-Controlled, Crossover Trial.

Journal of Nutrition 2018 September 2
Background: α-Cyclodextrin (α-CD), a soluble dietary fiber, may improve abnormal plasma lipids and promote weight loss. Preliminary evidence suggests that it may exert these effects by binding dietary fat and reducing absorption; this has not been tested in humans.

Objective: The primary objective was to test whether supplemental α-CD increases fecal content of dietary lipid in humans.

Methods: This was a randomized, double-blind, placebo-controlled, crossover study completed at the Mayo Clinic. Eight healthy volunteers, 5 premenopausal women and 3 men ages 23-54 y with body mass index (BMI; kg/m2) 18-27, underwent 2 separate study visits with a ≥2-wk washout period. The first morning of each visit volunteers consumed a standardized breakfast (14.5% protein, 27.5% fat, 60% carbohydrate, and 1.5 kcal/mL) containing [14C]tripalmitin and [3H]triolein with 2 g of α-CD or placebo, followed by 2 g of α-CD or placebo per meal for 2 more days. Volunteers consumed 100 g/d of dietary fat. Feces were collected for 72 h after the labeled breakfast to measure radiotracer content and total fecal fat. Radiotracer appearance in plasma TGs was measured at intervals after the labeled meal as a secondary outcome.

Results: Virtually no 3H radiotracer, but an average of ∼20% of the 14C radiotracer was recovered in fecal lipids, with no difference between α-CD and placebo. Total fecal fat content and radiotracer appearance in postprandial plasma TGs did not differ between the α-CD and placebo treatments. Plasma appearance of 14C-TG was 37% ± 14% less (P < 0.0001) than 3H-TG.

Conclusions: α-CD supplementation did not increase loss of dietary lipid in stool or total fecal fat compared with placebo in healthy adults. Greater stool loss and lesser appearance in plasma TGs of tripalmitin-derived [14C] compared with triolein-derived [3H] TGs imply different metabolic handling of these 2 dietary fat tracers. This trial was registered at www.clinicaltrials.gov as NCT03002168.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app