Add like
Add dislike
Add to saved papers

Single Amino Acid Change in 6-Phosphogluconate Dehydrogenase from Synechocystis Conveys Higher Affinity for NADP+ and Altered Mode of Inhibition by NADPH.

In the oxidative pentose phosphate pathway, 6-phosphogluconate dehydrogenase (6PGDH, EC 1.1.1.44) is one of the enzymes that catalyzes reactions generating NADPH. The model cyanobacterium Synechocystis sp. PCC 6803 is widely studied for numerous applications; however, biochemical knowledge of the NADPH production pathway in Synechocystis sp. PCC 6803 is limited. In this study, we conducted biochemical analysis of a 6-phosphogluconate dehydrogenase from Synechocystis sp. PCC 6803 (Sy6PGDH). We found that Sy6PGDH has unconventional characteristics, that is, the highest kcat value and non-competitive inhibition by NADPH. Additionally, phylogenetic analysis of cyanobacterial 6PGDHs revealed that an amino acid residue at position 42 in Sy6PGDH is highly conserved for each order of cyanobacteria, but Sy6PGDH is phylogenetically unique. In Sy6PGDH, a single amino acid substitution at position 42 from serine to threonine enhanced the affinity for NADP+ and altered the mode of inhibition by NADPH. The amino acid substitution equivalent to serine-42 also altered the affinity for NADP+ and mode of inhibition by NADPH in Arthrospira platensis. These data suggested that an amino acid residue corresponding to position 42 in Sy6PGDH is one of the important residues that possibly determines the function of cyanobacterial 6PGDHs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app