Add like
Add dislike
Add to saved papers

FcγRIIB receptor-mediated apoptosis in macrophages through interplay of cadmium sulfide nanomaterials and protein corona.

Humans are likely exposed to cadmium sulfide nanomaterials (CdS NMs) due to the increasing environmental release and in vivo application of these materials, which tend to accumulate and cause toxic effects in human lungs, particularly by interrupting the physiological functions of macrophage cells. Here, we showed that protein corona played an essential role in determining cellular uptake and cytotoxicity of CdS NMs in macrophages. Protein-coated CdS NMs enhanced the expression of FcγRIIB receptors on the cell surface, and the interaction between this receptors and proteins inhibited cellular uptake of CdS NMs while triggering cell apoptosis via the AKT/Caspase 3 signaling pathway. Cytotoxicity of CdS NMs was greatly alleviated by coating the nanomaterials with polyethylene glycol (PEG), because PEG decreased the adsorption of proteins that interact with the FcγRIIB receptors on cell surface. Overall, our research demonstrated that surface modification, particularly protein association, significantly affected cellular response to CdS NMs, and cellular uptake may not be an appropriate parameter for predicting the toxic effects of these nanomaterials in human lungs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app