Add like
Add dislike
Add to saved papers

H 2 Cleavage by Frustrated Lewis Pairs Characterized by the Energy Decomposition Analysis of Transition States: An Alternative to the Electron Transfer and Electric Field Models.

Knowing that the Papai's electron transfer (ET) and the Grimme's electric field (EF) models draw attention to somewhat different physical aspects, we are going to systematically (re)examine interactions in the transition states (TSs) of the heterolytic H2 -cleavage by the Frustrated Lewis Pairs (FLPs). Our main vehicle is the quantitative energy decomposition analysis (EDA), a powerful method for elucidation of interactions, plus the analysis of molecular orbitals (MOs). Herein, the Lewis acid (LA) is B(C6 F5 )3 and the Lewis bases (LBs) are tBu3 P, ( o-C6 H4 Me)3 P, 2,6-lutidine, 2,4,6-lutidine, MeN═C(Ph)Me imine, MeN(H)-C(H)PhMe amine, THF, 1,4-dioxane, and acetone. For a series of the phosphorus-, nitrogen-, and oxygen-bearing LBs plus B(C6 F5 )3 , we will show that (i) neither the electrostatic nor the orbital interactions dominate but instead both are essential alongside the Pauli repulsion and (ii) the frontier molecular orbitals (FMOs) of a TS can arise not only from the "push-pull" molecular orbital scheme by Papai et al., which directly involves the occupied σ and the empty σ* MOs of H2 , but also from a more intricate but energetically more fitting orbital interactions which have escaped notice thus far.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app